

UNIVERSITY OF SZEGET
FACULTY OF AGRICULTURE
HÓDMEZŐVÁSÁRHELY

**22nd Wellmann
International Scientific
Conference**

**UNIVERSITY OF SZEGED FACULTY OF AGRICULTURE
(Hódmezővásárhely, Hungary)**

**UNIVERSITY OF LIFE SCIENCES "KING MIHAI I" FROM TIMISOARA
FACULTY OF MANAGEMENT AND RURAL TOURISM (Romania)**

**HUNGARIAN ACADEMY OF SCIENCES
REGIONAL COMMITTEE IN SZEGED (Hungary)**

**FOUNDATION FOR AGRICULTURAL MODERNIZATION AND
RURAL DEVELOPMENT
(Hódmezővásárhely, Hungary)**

**22nd Wellmann
International Scientific Conference**

BOOK OF ABSTRACTS

University of Szeged Faculty of Agriculture
15th May 2025

Published by:

University of Szeged Faculty of Agriculture
Andrássy út 15.
6800 Hódmezővásárhely, Hungary

Responsible publisher:

Edit Mikó, dean

Executive editors:

Ingrid Melinda Gyalai
Szilárd Czóbel

The members of the Editorial Board:

Dávid Kóteles
Flórián Kovács
Ingrid Melinda Gyalai
László Beier
Szilárd Czóbel

ISBN: 978-963-688-044-6

MONITORING ANAEROBIC DIGESTION EFFICIENCY AND SLUDGE UTILIZATION PRE-TREATMENTS VIA DIELECTRIC PARAMETER MEASUREMENT

Sándor Beszédes^{1*}, Balázs Lemmer², Ákos Fazekas¹, Réka Dobozi²,
Tünde Baló¹, Zoltán Jákói¹

¹University of Szeged, Faculty of Engineering, Department of Biosystems Engineering, Szeged, HUNGARY

²University of Szeged, Faculty of Engineering, Department of Food Engineering, Szeged, HUNGARY

*corresponding author: beszedes@mk.u-szeged.hu

In multicomponent heterogeneous systems, where both chemical and structural changes occur during the process under investigation, the models used to calculate dielectric parameters cannot be applied with sufficient accuracy, therefore, dielectric parameters should be determined by measurements. The measurement of dielectric parameters enables indirect and non-invasive monitoring of the anaerobic digestion (AD) process.

Depending on the applied frequency, dielectric parameters can be sensitive to the changes in sludge composition (organic matter content, bound /free water ratio, microbial activity), making them suitable for evaluating disintegration degree in sludge pre-treatments; and, furthermore, the biodegradation efficiency and/or process stability during AD.

In our research, the dielectric behaviour of sludge from municipal and industrial wastewater sources was determined using an open-ended coaxial dielectric probe (DAK 3.5, Speag) connected to a vector network analyser (ZVL3, Rhode and Schwarz). The measurements were conducted in the frequency range of 200–2400 MHz both during pre-treatments (chemical, microwave, and combined treatments), and throughout the subsequent lab-scale batch mesophilic AD process.

During the pre-treatments, sludge disintegration degree was determined using COD fractionation methods, while in the AD process, the rate of organic matter reduction and the volume of produced biogas were monitored as well.

It was found that measuring the dielectric constant and loss factor within the frequency range of 200–600 MHz enables the identification of stages of the batch AD process and the determination of the optimal digestion time for maximising biogas production.

Acknowledgement: The research was financed by National Research, Development and Innovation Office (NKFI) FK 146344 project.