
The 9th International Electronic Conference on Water Sciences

11–14 November 2025 | Online

Organizing Committee

Conference Chair

Prof. Dr. Athanasios Loukas

Conference Secretariat

Ass. Prof. Pantelis Sidiropoulos

Session Chairs

Dr. Hossein Bonakdari
Dr. Lampros Vasiliades
Dr. Nikiforos Samarinis
Dr. Qiang Liu
Prof. Dr. Abbas Roozbahani
Prof. Dr. Carmen Teodosiu
Prof. Dr. Dapeng Li

Prof. Dr. Giuseppe Tito Aronica
Prof. Dr. Guglielmina Diolaiuti
Prof. Dr. Jianguo Zhou
Prof. Dr. Luis Garrote
Prof. Dr. Nicolò Colombani
Prof. Dr. Pingping Luo
Prof. Dr. Yanfang Sang

Scientific Committee

Dr. Ankur Srivastava
Dr. Barbara Ruffino
Dr. Ben Jarihani
Dr. Bommanna Krishnappan
Dr. Fernando Salazar
Dr. George Papaioannou
Dr. Gianni Bellocchi
Dr. Ioannis Panagopoulos
Dr. Jiren Xu
Dr. Joaquim Sousa
Dr. José Manuel Monteiro Gonçalves
Dr. Laura Bulgariu
Dr. Michael Nones
Dr. Mohd Soheb
Dr. Mohsen Besharat
Dr. Nelson Carriço
Dr. Panagiota Galiatsatou
Dr. Rajesh R. Shrestha
Dr. Rana Waqar Aslam
Dr. Ruth Quinn
Dr. Santiago Zazo
Dr. Seyed Mohammad Moein Sadeghi
Dr. Stefanos Stefanidis
Dr. Tania Mazzuca Sobczuk
Dr. Wei Zhang
Dr. Xin Pan

Dr. Yanfeng Wu
Dr. Young Gu Her
Dr. Yuxue Guo
Professor Min Ji
Professor Jr-chuan Huang
Prof. Dr. Ali Güл
Prof. Dr. Aris Psilovikos
Prof. Dr. Ashok Vaseashta
Prof. Dr. Bojan Đurin
Prof. Dr. Carlo Gualtieri
Prof. Dr. Dongfang Liang
Prof. Dr. Enrico Creaco
Prof. Dr. George Kargas
Prof. Dr. Giovanni Esposito
Prof. Dr. Hamed Assaf
Prof. Dr. Ifigenia Kagalou
Prof. Dr. Mohammed J. K. Bashir
Prof. Dr. Muhammad Hameed
Prof. Dr. Olcay Ünver
Prof. Dr. Roger Falconer
Prof. Dr. Silvio José Gumiere
Prof. Dr. Vicente S. Fuertes-Miquel
Prof. Dr. Vlassios Hrissanthou
Prof. Dr. Wim Cornelis
Prof. Dr. Xing Fang
Prof. Dr. Yaoming Ma

11-14 November 2025
Online

The 9th International Electronic
Conference on Water Sciences

Organised by

Co-Organised by

The Department of Rural
and Surveying Engineering
Aristotle University of Thessaloniki

Organizing Team

ecws@mdpi.com

sciforum-130331: Efficiency Assessment of Wastewater and Sludge Treatment using Dielectric Constant and Loss Factor Measurements

Zoltán Jákói ¹, Balázs Lemmer ², Ákos Fazekas ¹, Sándor Beszédes ^{1,*}

¹ Department of Biosystems Engineering, Faculty of Engineering, University of Szeged

² Department of Food Engineering, Faculty of Engineering, University of Szeged

In wastewater and sludge treatment processes, it is important to develop rapid and green measurement methods (i.e., with minimal chemical usage) that can be applied under industrial conditions, in addition to detailed analytical methods. Such methods could, for example, be used in the future for real-time efficiency monitoring. These requirements—non-destructive measurement, no chemical reagents required, and rapid determination—may be fulfilled by dielectric measurements. However, practical applications in the field of wastewater and sludge treatment remain limited.

In our research, an open-ended coaxial dielectric sensor (DAK3.5, SPEAG, connected to a Rohde & Schwarz ZVL3 VNA) was used to investigate the dielectric constant and loss factor within the 200–2400 MHz frequency range during various wastewater purification and sludge pre-treatment processes. Quantitative changes in organic pollutants in the wastewater were monitored by determining COD and BOD. During sludge treatments, changes in the solubility of organic matter (COD fractionation method) as well as aerobic and anaerobic biodegradability indicators (BOD and mesophilic biogas production) were also assessed.

The research results indicated that the decrease in organic matter concentration has a strong correlation with dielectric parameters in the 200–800 MHz frequency range. Moreover, it was found that, by jointly analyzing the frequency- and temperature-dependent dielectric behavior of wastewater of different origin and composition, characteristic differences in dielectric parameters could be observed—even for the same organic matter content. During sludge biodegradation, the critical frequencies corresponding to the maximum values of the dielectric constant and loss factor (within the 200–2400 MHz range) shifted towards higher frequencies, in accordance with the change in the organic matter removal efficiency and biogas production.

Acknowledgement: This research was financed by the National Research, Development and Innovation Office (NKFI) FK 146344 project.

© 2025 by the author(s). Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).